CRSS/FANR 3060: Soils and Hydrology

1. Landscapes
 a. Landscapes: soil, water, rock
 b. Views of a Landscape
 c. Watersheds and landscape formation
 Lab 1: *Maps; Rocks and Soil Profiles* (in 1201 Plant Sci.)

2. Soil Profiles and Their Formation
 (No class on M) 1/16
 a. Weathering of rocks
 b. Soil profile formation
 c. Soil horizons
 Lab 2: *Soil Properties and Profiles* (in 1201 Plant Sci.)

3. Soil Horizons and Classification 1/23
 a. The soil taxonomy system
 b. Diagnostic horizons
 c. Soil orders
 Lab 3: *Soil Profiles and Classification* (field trip, Whitehall Forest)

4. Physical Properties of Soils 1/30
 a. Soil texture
 b. Soil density and porosity
 c. Managing soil physical properties
 Lab 4: *Soil and Landscape Interpretation* (field trip, Whitehall Forest)

5. Chemical Properties of Soils 2/6
 a. Soil mineralogy
 b. pH and ion exchange
 c. Acidity and salinity
 Lab 5: *Soil Physical Properties* (in 1201 Plant Sci.)

6. Plant Nutrients 2/13
 a. Plant nutrition and essential elements
 b. N, P, and K in soils
 c. Microelements
 Lab 6: *Cation Exchange Capacity* (in 1201 Plant Sci.) **Exam 1** (Wks 1-5)

7. Soil Biology and Productivity 2/20
 a. Soil organisms
 b. Roles of soil organisms (humus and nutrient cycling)
 c. Productivity of agricultural and forest soils
 Lab 7: *Soil Sampling* (field trip)

8. Fertilization 2/27
 a. Fertilizers
 b. Nutrient and soil management
 c. Sustainability
 Lab 8: *Soil Testing and Organic Matter* (in 1201 Plant Sci.)
9. Soil Water
 a. Interaction of water with soil
 b. Storage capacity of soils and profiles
 c. Water flow in soils
 Lab 9: Soil Water Content (in 1201 Plant Sci.)

10. Precipitation and Evapotranspiration
 a. Precipitation forms, storm events and measurement
 b. Evapotranspiration
 c. Field water budgets
 Lab 10: Water Movement (in 1201 Plant Sci.)
 Exam 2 (Wks 6-9)

11. Infiltration, Streamflow, and Ground Water
 a. Infiltration (forest and cropland)
 b. Sources of stream flow
 c. Aquifers
 Lab 11: Rainfall and Runoff (field trip--Greenhouse Complex)

12. Hydrologic Statistics and Hydraulics
 a. Hydrographs
 b. Basic hydraulics
 c. Management effects on hydrology
 Lab 12: Measuring Streamflow (field trip)

13. Erosion and Sedimentation
 a. Importance of erosion
 b. Erosion mechanics
 c. Erosion control
 Lab 13: Discharge and Soil Erosion (in 1201 Plant Sci.)

14. Soil Quality and Contamination
 a. Soil contamination—kinds, sources
 b. Movement of contaminants in the landscape
 c. Risk assessment and soil management
 Lab 14: Heavy Metals (in 1201 Plant Sci.)
 Exam 3 (Wks 10-13)

15. Issues in Water Quality
 (Last class: W, 4/26)
 a. Water quality regulations
 b. Components of water quality
 c. Managing landscapes for water quality
 Lab 15: No lab

Thurs, 4/27: Reading Day (can schedule an optional review session)

Final Exam
Wed, May 3, 12:00-3:00

Reading assignments for each week are the correspondingly numbered chapters in the course textbook, *Readings in Soils and Hydrology*.

The course syllabus is a general plan for the course; deviations announced to the class by the instructors may be necessary.
Course Introduction: This is a junior level course designed as an introduction to soil science and hydrology; it will hopefully provide the student with sufficient basic information to serve as a sole course in these topics, or form an introduction for later courses in soil science and/or hydrology. The subject matter is oriented towards students majoring in soil or hydrology, environmental sciences, forestry, plant sciences and related fields. The lecture and laboratory will hopefully be complimentary in presenting information of both a theoretical and practical nature. Prerequisites for the course include introductory chemistry and algebra.

Course Objectives: The overall objective of the course is to give students a basic background in soil science and hydrology, including key concepts in these fields such as:
> how to describe and interpret landscape and soil profile information in the field and from soil maps;
> how to read and interpret topographic and hydrologic information within a landscape and watershed framework;
> basic familiarity with key soil properties and how they relate to soil management and productivity;
> understanding of the hydrologic cycle and how management affects hydrologic processes in forest and cultivated settings;
> the effect of management on environmental quality in terms of soil productivity and water quality.

Class Meetings: Lecture meets at 11:15 am M, W, and F in Rm. 2401 Plant Sciences; two-hour labs meet on Wednesday and Thursday in Rm. 1201, Plant Sciences Bldg. Attendance in lecture will not be taken, but is highly advised, as most important material for the course will be covered in lecture. Attendance at your assigned lab is mandatory; unexcused absences will result in a 0 grade for lab handins for that laboratory. Lab handin sheets will be due at the end of lab, or if outside work is required, by the next Monday lecture; labs that are late, or are disorganized or messy, will be penalized.

Course Materials: The text for the course is available in an unbound, loose-leaf format for purchase at the Baxter Street Bookstore (on the Baxter Street hill). Lab handouts are also included in this packet. Please purchase the packet by the first lab period (W or Th). You should read over the assigned chapter carefully by Wednesday of each week, and have read the lab materials before coming to your assigned lab. Material for quizzes and exams will come from the reading, labs, and lecture notes, combined; note that you are responsible for the week's reading, whether it is discussed in the lecture or not.

There is a course website linked at soilsteaching.uga.edu that contains basic course info, old exams, and other study materials. Check it out to see what's available there.

Course Grading: The course will be graded on a 90/80/70/60% basis, corresponding to A/B/C/D/F, with +/- being added for grades 2% above or below these cutoffs. Exams and quizzes will be combined multiple choice, fill-ins, definitions, short essay, and problems. Quizzes will usually be given weekly in lecture, but may be given in lab, either announced or unannounced; hourly exams will be given during the class period on Fridays during weeks listed on the schedule. Make-up quizzes, labs or exams will be made only for previously excused absences as approved by the course instructors. All lab and lecture grades will be incorporated into a single final course grade, based on the following:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 hourly exams</td>
<td>3 @ 100 pts</td>
<td>300 (47%)</td>
</tr>
<tr>
<td>Lab handin sheets</td>
<td>13 @ 10 pts</td>
<td>130 (20%)</td>
</tr>
<tr>
<td>Quizzes</td>
<td>13 @ 5 pts</td>
<td>65 (10%)</td>
</tr>
<tr>
<td>Final exam</td>
<td>1 @ 150 pts</td>
<td>150 (23%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>645 (100%)</td>
</tr>
</tbody>
</table>

All academic work must meet the standards contained in “A Culture of Honesty”. All students are responsible to inform themselves about those standards before performing any academic work.

---Course Instructors---

Prof. William Miller 3107 Plant Sciences 542-2461 wmiller@uga.edu
Prof. Todd Rasmussen 115 Forestry Bldg. 4 542-4300 trasmuss@uga.edu
Rachel Ryland 4111B Plant Science 542-0916 rryland@uga.edu
Chris Johnston 4111B Plant Science 542-0916 cjohnst@uga.edu
Zack Sanders Plant Science zsanders@uga.edu
Aaron Joslin Forestry 4-417 joslinawarnell.uga.edu
Rebecca McKee Forestry 1-301 A rkm42083@uga.edu